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Abstract — this paper is related to the development of signal 

processing techniques for automatic recognition of bird species. 

Bird sounds are divided by their function into songs and calls 

which are further divided into hierarchical levels of phrases, 

syllables and elements. It is shown that syllable is suitable unit 

for recognition of bird species. Diversity within different types 

of syllables birds are able to produce is large. Automatic 

recognition system for bird species used in this paper consists 

of segmentation of syllables, feature generation, classifier 

design.  
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I. INTRODUCTION 
 

  Since prehistoric times, people have interacted with birds. 

They have long been utilized as a source of food. After the 

invention of agriculture, they were often seen as pests 

competing for crop resources. The relationship has 

continued to evolve ever since. 

  As humanity and technology spreads across the face of the 

Earth, interactions, both negative and positive, between birds 

and people grow. In recent years, public sentiment towards 

birds has changed from something to be killed for fun, food. 

Now birds are considered to be deserving of protection. 

Because birds come and go as they please, and cannot 

(generally) be kept out by fences, scientists and engineers 

seek automated ways to determine their presence. Birds, by 

and large, are a garrulous lot, so microphones and audio 

processing equipment could possibly provide this capability. 

  Birds are critical to ecosystem functioning, so techniques to 

make avian monitoring more efficient and accurate will 

greatly benefit science and conservation efforts. Birds are 

particularly abundant and diverse consisting of journalists 

and specialists as well as migrants and local breeders. They 

are important consumers; they eat fruit, grains, nectar, and 

insect. As such they contribute to a variety of important 

ecosystem functions. They play the important role in 

controlling insect‘s population; they are important plant 

dispersal agent and pollinator. Since bird plays such varied 

roles in ecosystem functions, they are vulnerable to both 

human induced habitat change and global climate change 

and as a result May species are declining.  

  Acoustic communication in birds is rich and in one of the 

most directs ways for humans to detect them. Birds sound 

called as calls are species specific acoustic signature that 

readily announces their presence. Techniques like mist 

netting, point counts and transect count are used for 

surveying birds. The most significant drawback of these 

methods is the reliance on highly trained professional for 

making identification. 

  In recent years, classifying bird species based on recorded 

vocalization is affined by manual inspection of 

spectrographs by experts. The fact is manual inspection of 

sound spectrographs yield correct judgment has encouraged 

research into automatic classification of bird species. 

 

                                II. PREVIOUS WORK 
 

  Only few studies have been done on automatic recognition 

of bird species and efficient parameterization of bird sounds. 

In (Anderson, Dave & Margoliash 1996, Kogan & 

Margoliash 1998) dynamic time warping and hidden Markov 

models were used for automatic recognition of songs of 

Zebra Finches (Taeniopygia guttata) and Indigo Puntings 

(Passerina cyanea) [1]. In these studies syllables were 

represented by spectrograms. Comparison of spectrograms is 

computationally demanding and, in the case of field 

recordings, they often include also environmental 

information that is not relevant for recognition of bird 

species. 

  In (McIlraith & Card 1997) tested recognition of songs of 

six species common in Manitoba, Canada [2]. In this work 

songs were represented with spectral and temporal 

parameters of the song. Dimensionalities of the feature space 

were reduced by selecting features for classification by 

means of their discriminative ability. Dynamic Time 

Warping was used for classification of the songs. 

 

III. SEGMENTATION OF BIRD SONG 
 

  Bird vocalization is usually considered to be composed of 

calls and songs. Calls are most commonly brief isolated 

sounds which are usually associated with a specific 

communicative function, e.g., they may represent a warning 

for an approaching predator. Songs are more complicated 

patterns of vocalization which are most commonly 

associated with territorial singing of male birds and mating. 

Bird vocalizations are often divided into hierarchical levels 

of phrases, syllables, and elements [3]. For example, the 

levels of a song of the Common Chaffinch (Fringilla 

coelebs) are illustrated in Fig. 1. A phrase is a series of 

syllables that occur in a particular pattern. Usually, syllables 

in a phrase are similar to each other, but sometimes they can 

be also different as in the last frame of the song presented in 

Fig. 1. Syllables are constructed of elements. In simple 

cases, syllables are equal to elements, but complex syllables 

may be constructed from several elements. Separation of 

elements is often difficult and can be ambiguous. Call 

sounds are usually composed of only one syllable and the 

phrase level cannot be detected. The phrase level is also 

commonly missing in songs of certain species. 
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  In this paper, we call the smallest unit a syllable. A syllable 

is basically a sound that a bird produces with a single blow 

of air from the lungs. This is also somewhat inaccurate 

definition as many birds are capable of complicated circular 

breathing cycles during singing [4]. The rate of events in 

bird vocalization may also be so high that the separation of 

individual syllables is difficult to perform in a natural 

environment due to reverberation. 

 

Fig.1. Hierarchical levels of song of the Common Chaffinch. 

 

  The segmentation of a recording to individual syllables is 

performed using an iterative time-domain algorithm [20]. 

First, a smooth energy envelope of the signal is computed 

and the global minimum energy is selected as the initial 

background noise level estimate NdB. Initial threshold TdB  is 

set to the half of the initial noise level, which is set to the 

lowest signal envelope energy. Noise level and threshold are 

updated using the following algorithm until convergence so 

that the noise level is sufficiently stable. 

 

I. Algorithm:  
 

1) Find syllable candidates, i.e., regions that are above 

syllable threshold TdB. 

2) Update   NdB from gaps between syllable candidates. 

3) Update the threshold, e.g. TdB=NdB/2, and return to step 1.  

 

IV. FEATURES 
 

  The objective in pattern recognition or classification is to 

classify objects (patterns) into number of categories (classes) 

(Theodoridis & Koutroumbas 1998). In this work syllables 

extracted from songs and calls of birds are used as patterns. 

Classification is done based on the features, which are 

calculated from the syllables to be classified or recognized. 

Features constitute a feature vector, which is a representation 

of the syllable. Features are generated in three phases. First 

is simply calculation of features of patterns (raw data), 

which is followed by the removal of outliers, clearly 

erroneous syllables[14]. In data normalization feature values 

are adjusted to the same dynamic range so that each feature 

has equal significance to the classification result. Classifier 

could be also trained with normalized data, but this may 

require more training data. Training of the classifier could 

also take more time with normalized data. 

  Classification is done based on the features, which are 

calculated from the syllables to be classified or recognized. 

Features constitute a feature vector, which is a representation 

of the syllable. Features are generated in three phases. First 

is simply calculation of features of patterns (raw data), 

which is followed by the removal of outliers, clearly 

erroneous syllables. In data normalization feature values are 

adjusted to the same dynamic range so that each feature has 

equal significance to the classification result. Classifier 

could be also trained with normalized data, but this may 

require more training data. Training of the classifier could 

also take more time with normalized data [10]. 

  Most of the features are calculated on frame basis. This is 

common in audio and speech analysis, because the amount 

and variability of data is reduced. First, syllables are divided 

into overlapping frames. Features are calculated from 

windowed frames, which results feature trajectories of the 

syllable. Mean and variance values of trajectories are 

calculated, thus each basic feature results in two actual 

features. Final feature vector include mean and variance 

values of frame based features plus parameters calculated 

from the entire syllable. In acoustical feature two features 

are there,   

 Spectral Features 

 Temporal Features 

 

A. Spectral Features: 
  Frequency range is calculated from the entire syllable. All 

other spectral features are calculated on the frame basis and 

they provide short time spectral properties of the syllable. 

Frame size of 256 samples with 50% overlap is used. Fourier 

transform is applied to signal frames that are windowed with 

Hanning window. 

 

1. Spectral centroid (SC) 
  Spectral centroid is center point of spectrum and in terms 

of human perception it is often associated with the 

brightness of the sound. Brighter sound is related to the 

higher centroid. Spectral centroid for signal frame is 

calculated as: 

 
                                                                                                                                     
                                                                                       (1) 

                                     

  Where X is discrete Fourier transform (DFT) of signal 
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  Signal bandwidth is defined as a width of the frequency 

band of signal frame around center point of spectrum. The 

bandwidth is calculated as: 

 

 

 

                                                                                          (2) 

 

 The bandwidth of syllable is calculated as average of 

bandwidth of DFT frames of syllable. 

 

3. Spectral roll off frequency (SRF) 
  Spectral roll off frequency is the point below which certain 

amount of power spectral distribution resides. Feature is 

related to ―skewness‖ of spectral shape. The measure can 

Distinguish sounds with different frequency ranges. Spectral 

roll off frequency for a DFT 

Frame is defined as: 

 

                                                                                          (3) 

 

 

  Where TH is the threshold between 0 and 1, here we use a 

commonly used value 0.95. 

 

4. Delta spectrum magnitude (spectral flux) (SF) 
  Delta spectrum magnitude measures difference in spectral 

shape. It is defined as the 2-norm of difference vector of two 

adjacent frame spectral amplitudes. It gives a higher value 

for syllables with a higher between-frame difference. 

Formula for delta spectrum magnitude calculations is given 

as: 

 

                                                                                       (4) 

 

5. Spectral flatness (SFM) 
  Spectral flatness measures the tonality of a sound. It gives a 

low value for noisy sounds and a high value for voiced 

sounds. Measure can discriminate voiced sounds from 

unvoiced also if they occupy same frequency range. Spectral 

flatness is the ratio of geometric to arithmetic mean (Markel 

& Gray 1976) of signal spectrum and it is given in   dB 

scale as: 

 

                                                                                        (5) 

 

6. Frequency range (range1, range2) 
  Frequency range gives low and high limit value of the 

frequency range that a syllable occupies. Frequency range is 

calculated for the whole syllable. The frequency range and 

the length of the syllable together define boundaries of the 

syllable. Frequency range is calculated by means of 

normalized power spectrum of the syllable. Low and high 

limits are respectively the lowest and highest frequency bin 

whose power spectrum value in   dB scale is above a 

threshold. The threshold value used here is -40dB. 

 

B. Temporal features: 
  In addition to the features described below, the temporal 

duration of the syllable (T) is also used as the feature of the 

syllable. The zero-crossing rate (ZCR) and short time signal 

energy are calculated on frame basis. The size of a frame is 

256 samples and adjacent frames overlap 50% as it was also 

for the spectral features. Frames are windowed with 

rectangular window. 

 

1. Zero-crossing rate (ZCR) 
  Zero-crossing rate (ZCR) is number of time domain   zero-

crossings in processing frame. A zero-crossing occurs when 

adjacent samples have different signs. ZCR is closely related 

to spectral centroid as they both measure construction of 

spectral shape of frame. It is defined for the frame as: 

_   _ . 
                                                                                           (6) 

 
 Where x is time domain signal frame and M is the size of 

the frame. Signum function sgn is defined as: 

 

                                                                                        (7) 

 

 

2. Short time signal energy (EN) 
  Maximum energy of the energy trajectory for the syllable is 

normalized to 0dB without normalization energy depends on 

the recording gain and other recording conditions and would 

not assign much information on the energy content of the 

syllable. Normalized energy is able to discriminate syllables 

with different within-syllable energy content. It is defined 

for the frame as: 

 

                                                                                        (8) 

 

V. CLASSIFICATION METHODS AND MODELS 
 

  The role of a classifier is to decide which the best possible 

class for the test pattern is. This is done by comparing 

similarity between test pattern and model or target patterns 

of Classes. Classifier does the decision based on the 

similarity or distance measure between test pattern and 

model patterns. Suitable distance measure depends on the 

problem and selected classification scheme. Simplest 

distance measure is minimum length measure in which 

Euclidean distance between feature vectors of test pattern 

and model patterns of classes is calculated. 

  The recognition of individual syllables is based on the 

nearest neighbor classifier. This method involves no training 

process. All samples in the training data are used as such for 

representing the classes. In the classification phase, the test 

syllable is compared against all syllables of the training data, 

M

n

K

n

nXTHnXKSRF
00

)2^)(2)^(max(

Am

Gm
SFM

10
log10

1

0

))1(sgn())(sgn(
M

n

nxnxZCR

0)(,1

0)(,1))(sgn( nx

nxnx

N

i

nximE
1

2

10 ][log20)(

M

n

M

n

nx

nxSCn

BW

0

2

0

2

)(

)(

M

n

iii nXnXDSM
0

1 )()(



International Journal of Electronics, Communication & Soft Computing Science and Engineering 
 ISSN: 2277-9477, Volume 2, Issue 4  

 

25 

 
 

and the class label is determined by the training data sample 

which has the largest similarity/smallest dissimilarity to the 

test syllable.  

  There are different classifiers, 

1. Gaussian mixture model 

2. Hidden Marko model 

3. Support vector machine 

4. k-Nearest-Neighbor 

5. Dynamic Time Warping 

   

A. Dynamic Time Warping  
 

  Syllables have typically different durations. Dynamic time 

warping (DTW) algorithm can be used for comparing 

variable length sequences [26]. Its basic idea is to warp the 

time axes of two sequences nonlinearly so that the maximum 

fitting between the sequence elements is attained. The 

computation can be done in a two-dimensional trellis. Here, 

the word element refers to the generic element of the feature 

vector sequence. 

  In the following, two syllables are represented by the 

trajectory models A  and B . The elements of the sequences 

are frame-based feature vectors and the sequence lengths are 

denoted by AL  and BL . The distance between the sequence 

elements )(iA and )( jB  is denoted by ),( jid  , and the 

cumulative distance at trellis coordinate ),( ji is denoted by

),( jig . First, the trellis is initializing 

 

 

 

 

 

                                                                                             (9) 

 

Cumulative distances are then computed using dynamic 

programming as follows: 

 

 

                                                                                         

                                                                                           (10) 

Where index goes from 1 to AL  and index j  from 1 to BL . 

Parameter 
d
 is the weight of the diagonal movement in the 

trellis. DTW distance is define to be 

 

 

 

 

                                                                                           (11) 

 

Here, the cumulative distance is divided by the sum of the 

lengths of the sequences, but other choices are also possible. 

In order to use DTW, the distance measure must first be 

defined for the sequence elements. In the sinusoidal 

modeling, there are two parameters per sequence element: 

amplitude and the frequency. We can now consider these 

two parameters separately and have a two-dimensional 

vector or use the amplitude information to weigh the 

importance of the frequency information. These two 

approaches were compared. 

  The recognition system based on DTW consists of the 

templates which are the reference sequences of the classes. 

Each sequence consists of feature vectors, so each template 

is a point trajectory in the feature space. In order to expand 

the point trajectory representation into probability 

distributions, there are two alternatives. The templates can 

be divided into segments, and each segment is represented 

by some probability distribution of the feature vectors. The 

information about the temporal order of the feature vectors 

inside each segment will then be lost, but the order of the 

segments can be maintained by forming chains of segments. 

This is essentially the concept of Hidden Marko Model   

(HMM) [27]. Another alternative to bring the basic DTW 

algorithm into probability domain is to model the 

distribution of the DTW distances between the training data 

and the template. This is equal to adding the probability 

density function to each element of the DTW template and 

then computing the probability of the data sequence given 

the chain of probability density function by means of the 

Viterbi algorithm [28]. The difference between these two 

alternatives is that in the HMM the temporal resolution is 

usually relatively small, i.e., the number of the states in the 

HMM is smaller than the number of the elements in the 

typical DTW template.  

  The benefit of the HMM approach is that different states 

can have different probability density function and thus the 

changing variance of different parts of the sequence can be 

taken into account in the model. When only the distribution 

of the cumulative distance is modeled, the same probability 

density function is applied to all parts of the sequence. These 

alternatives are illustrated in Fig. 2. 

 
 

Fig. 2.  Examples of trajectory models. 
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  The motivation for the use of DTW was the desire to 

compute the distances between syllables with varying 

lengths. 

 

CONCLUSION 
 

  In this work focus has been in species that produce 

regularly sounds that response not tonal or harmonic in 

structure. The long term objective in this research is to 

envelop methodology for a system that is capable to 

recognize majority of common Finnish bird pieces in field 

conditions. 

  The sounds of birds are produced mainly by the unique 

organ called syrinx. Diversity Within structure of syrinx of 

different species is large, which evoke large number of 

different sounds birds can produce. Bird sounds can be 

divided by function into songs and calls. Songs are more 

spontaneous than calls and mostly produced by males during 

the breeding season. Call sounds are produced by both sexes 

throughout the year and they occur in some particular 

context with certain function. The DTW method was used 

for classification. 
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