
 International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 3, Issue 4

8

 Review of 5 stage Pipelined Architecture of 8 Bit Pico

Processor

Shankar Kumar Mishra Dr. Nisha P Sarwade

Abstract- Proposed paper is the study of unpipelined

architecture of a 8 bit Pico Processor (pP) [3][4] and how its overall

through put can be increased by implementing pipelining. Pico

processor is an 8 bit processor which is similar to 8 bit

microprocessors for small embedded applications and it is

intended for educational purpose .In the past un pipelined single

cycle and multi cycle Pico Processor is implemented [3] .Its speed

and overall through put can be increased by implementation of

pipeline architecture [1] so that it can be used in small embedded

applications like gaming processor.
Keywords- Pico Processor, VHDL, RISC, Pipeline.

I. INTRODUCTION

The picoProcessor abbreviated as pP is an 8-bit processor

intended for educational purposes. It is similar to 8-bit

microprocessor for small embedded applications, but has an

instruction set architecture more similar to RISC processors.

The pP has separate instruction and data memories. The

instruction is 4K instruction in size and the data memory is

256 bytes, the pP can also address I/O devices using up to 256

input and output ports. Within the processor there are eight 8-

bit general purposes registers r0 to r7. Register r0 is always

read as zero and ignores writes. In the past first unpipelined

single cycle architecture of pP is implemented then it has been

observed that its speed can be increased by introducing multi

cycle unpipelined architecture
 [3]

.

 Apart from past work it is

observed that modern day processors are very fast in order to

be able to process a large number of instructions. One way of

making the processor fast is to increase the clock frequency.

However, since the power dissipation of a microprocessor is

proportional to the frequency of the clock, having a very high

clock could lead to overheating of the processor. Another way

to increase the number of instructions is to process multiple

instructions at the same time. Pipelining is an implementation

technique whereby multiple instructions are overlapped in

execution. A pipelined processor increases performance by

increasing the throughput as compared to a non-pipelines

processor. Pipelining, however, introduces a whole new set of

problems, also referred to as hazards, while executing the

instructions. The following paper describes the study of un

pipelined single cycle and multi cycle architecture of

picoProcessor and how its overall through put can be

increased by introducing pipelinig
1][2]

.In this paper section I

consists of introduction to picoProcessor and pipelining,

Section II describes the un pipelined single cycle

picoProcessor section III tells the multi cycle unpipelined

architecture, section IV describes the proposed architecture

with pipeline, section V gives the hazards in pipeline

architecture of pP whereas section VI gives the expected

result and future work.

II. AN UN-PIPELINED SINGLE CYCLE PP

Figure 1 shows an unpipelined pP organization that

executes each instruction in one clock cycle. Values stored on

one clock edge flow through the data path, and the machine

state is updated on the next clock edge. The clock Period must

be long enough for the slowest path through the design.

Execution within a cycle starts with checking whether an

interrupt request is pending. If one is, the current PC and

condition code bits are saved in the interrupt register and the

next PC value is selected to be the address 1. No other

machine state is updated. If no interrupt is requested, the PC

value is used to index the instruction memory to fetch the

instruction to be executed. Since all operations for the

instruction take place within a cycle, the instruction memory

must be an asynchronous ROM. The next PC value depends

on the instruction op code and, in the case of branch

instructions, whether the branch is taken or not. For JSB

instructions, the next PC value is saved into the return-address

stack and the stack pointer is incremented. For RET

instructions, the top value in the stack is used as the next PC

and the stack pointer is decremented. The general-purpose

register (GPR) is an a multiport register file with two

 International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 3, Issue 4

9

asynchronous read ports and a synchronous write port. The

register address field for one read port is the r1 field of the

instruction. The address for the other read port is either the rd.

field (for STM and OUT instructions) or the r2 field (for other

instructions).The write port is used for ALU, shift, load and

input instructions, provided the destination address is not r0.

The rd field from the instruction is used as the write-port

address, and the data to be written comes from the appropriate

source, depending on the instruction
 [3]

.

 The ALU calculates the

result value for ALU and shift instructions and the effective

address for memory instructions. For ALU and shift

instructions, the condition code bits are updated according to

the result. The multiplexer on the ALU input selects between

a register operand for register-register instructions or the

constant value from the instruction for immediate and memory

instructions. The data memory is asynchronously read for load

instructions and synchronously written for store instructions.

The address comes from the ALU result. The external port

interface is used for input and output instructions. Since this

implementation of the pP executes instructions within a single

cycle, it assumes that port inputs are asynchronous within a

cycle and that port outputs update the port register

synchronously at the end of the cycle. Thus, the port ready

input is ignored.

III. AN UNPIPELINED MULTICYCLE PP

Figure 2 shows an unpipelined pP organization that takes

multiple clock cycles to execute each instruction. On each

cycle, one step of instruction interpretation is performed, and

the machine state is updated at the end of the cycle. Different

instructions may take different numbers of cycles, depending

on the interpretation steps required. The advantage of this

approach over the single-cycle approach is that much less

work needs to be done per cycle, so the cycle time can be

faster. Furthermore, many instructions do not require all

interpretation steps, so their execution will be faster than for

the single-cycle implementation
 [3]

.

 The first cycle of execution

involves checking whether an interrupt request is pending. If

one is, the current PC and condition code bits are saved in the

interrupt register and the PC is set to 1. Execution of the

interrupt service code then proceeds in the subsequent

cycle .If no interrupt is requested, the first cycle is used to

index the instruction memory to fetch the instruction to be

executed. In this implementation, the instruction memory is a

synchronous ROM, and the ROM output register forms the

instruction register (IR). The PC register is updated with the

incremented PC value. During the second cycle, the GPR

register file is accessed to fetch operands, in case they are

required. The register file in this implementation has

synchronous read ports, and the operands are stored in two

output registers. Also in this cycle, control-flow processing is

performed. If the instruction in the IR is a conditional branch

that is taken, the PC is updated with the sum of its current

value and the branch displacement. If the instruction is a JMP,

the PC is updated with the target address. If the instruction is a

JSB, the PC is updated with the target address, the current PC

value is pushed onto the return-address stack, and the stack

pointer is incremented. If the instruction is a RET, the PC is

updated from the top of the stack, and the stack pointer is

decremented. If the instruction is a RETI, the PC and

condition codes are restored from the interrupt register, and

interrupts are enabled. If the instruction is an ENAI or DISI,

the interrupt enable bit is set accordingly. In all cases of

control flow instructions, processing is complete after the

second cycle.

 The third cycle (if required) involves

computation of a data result or an effective address by the

ALU. The result is stored in an output register. Also, for

arithmetic, logic and shift instructions, the condition code bits

are updated. For memory and I/O instructions, a further cycle

is used to access the memory or port register. The ALU output

register is used as the address. The data memory in this

implementation reads and writes synchronously. For memory

stores, write data from the GPR register file output register is

stored at the end of the clock cycle. For memory loads, read

data is made available at the data memory output register at

the end of the cycle. For port input and output instructions, the

pP checks the port ready input at the end of the cycle. If it is

negated, the pP repeats the cycle, allowing the port controller

extra time to read or write the data. When port ready is active,

the input or output operation is complete. For input

instructions, the port data is stored in the data input register. A

final cycle is required for instructions that update a destination

register in the GPR register file, namely, arithmetic, logic,

shift, and load and input instructions. The data source is one

of the ALU output, the data memory output or the port input

data register, depending on the instruction. The destination

register (if not r0) is updated at the end of the cycle.

 International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 3, Issue 4

10

IV. PROPOSED ARCHITECTURE WITH

PIPELINE

 Fig.3 pipeline architecture of 8 bit Pico Processor

4.1 Instruction Fetch Unit

The first stage in the pipeline is the Instruction Fetch.

Instructions are fetched from the memory and the Instruction

Pointer (IP) is updated. The function of the instruction fetch

unit is to obtain an instruction from the instruction memory

using the current value of the PC and increment the PC value

for the next instruction as shown in Figure. This stage is

where a program counter will pull the next instruction from

the correct location in program memory. In addition the

program counter will updated with either the next instruction

location sequentially, or the instruction location as determined

by a branch The instruction fetch stage is also responsible for

reading the instruction memory and sending the current

instruction to the next stage in the pipeline, or a stall if a

branch has been detected in order to avoid incorrect execution.

The instruction fetch unit contains the following logic

elements that are implemented in VHDL: 12-bit program

counter (PC) register, an adder to increment the PC by four,

the instruction memory, a multiplexor, and an AND gate used

to select the value of the next PC. Program counter and

instruction memory are the two important blocks of

Instructions Fetch Unit.
[1][2]

4.1.1 Program counters (PC): It is a 12 bit device that is

connected to the data bus and the address bus. It will hold its

value unless told to do something. If the I/P is kept high the

device will count.

4.1.2 Instruction memory (IM): The Instruction memory of pP

is of 4KB. During the Instruction Fetch stage, a 19-bit

instruction is fetched from the memory. The PC predictor

sends the Program Counter (PC) to the Instruction memory to

read the current Instruction. At the same time, the PC

predictor predicts the address of the next instruction by

incrementing the PC by 1.

4.1.3 Instruction registers (IR): An instruction register (IR)

is the part of control unit that stores the instruction currently

being executed or decoded. In simple processors each

instruction to be executed is loaded into the instruction

register which holds it while it is decoded, prepared and

ultimately executed, which can take several steps. Traditional

RISC processors use a pipeline of instruction registers where

each stage of the pipeline does part. Of the decoding,

preparation or execution and then passes it to the next stage

for its step. Modern processors can even do some of the steps

of out of order as decoding on several instructions is done in

parallel. Decoding the op-code in the instruction register

includes determining the instruction, where its operands are in

memory, retrieving the operands from memory, allocating

processor resources to execute the command. The output of IR

is available to control circuits which generate the timing

signals that controls the various processing elements involved

in executing the instruction.

4.2 Instruction Decode Unit

The Instruction Decode stage is the second stage in the

pipeline. Branch targets will be calculated here and the

Register File, the dual-port memory containing the register

values, resides in this stage. The forwarding units, solving the

data hazards in the pipeline, reside here. Their function is to

detect if the register to be fetched in this stage is written to in

a later stage. In that case the data is forward to this stage and

the data hazard is solved. This stage is where the control unit

determines what values the control lines must be set to

depending on the instruction. In addition, hazard detection is

implemented in this stage, and all necessary values are fetched

from the register banks. The Decode Stage is the stage of the

CPU's pipeline where the fetched instruction is decoded, and

values are fetched from the register bank. It is responsible for

mapping the different sections of the instruction into their

proper representations (based on R or I type instructions). The

Decode stage consists of the Control unit, the Hazard

Detection Unit, the Sign Extender, and the Register bank, and

is responsible for connecting all of these components together.

It splits the instruction into its various parts and feeds them to

the corresponding components. Registers Rs and Rt are fed to

the register bank, the immediate section is fed to the sign

extender, and the ALU op-code and function codes are sent to

the control unit. The outputs of these corresponding

components are then clocked and stored for the next stage The

Control unit takes the given op-code, as well as the function

code from the instruction, and translates it to the individual

instruction control lines needed by the three remaining stages.

This is accomplished via a large case statement.

4.2.1 Control unit: The control unit of the Pico processor

examines the instruction op code bits [19 – 14] and decodes

the instruction to generate control signals to be used in the

additional modules. The RegDst control signal determines

which register is written to the register file. The Jump control

signal selects the jump address to be sent to the PC. The

Branch control signal is used to select the branch address to be

sent to the PC. The MemRead control signal is asserted during

a load instruction when the data memory is read to load a

register with its memory contents. The MemtoReg control

 International Journal of Electronics, Communication & Soft Computing Science and Engineering
 ISSN: 2277-9477, Volume 3, Issue 4

11

signal determines if the ALU result or the data memory output

is written to the register file. The ALUOp control signals

determine the function the ALU performs. (E.g. and, or, add,

shl, shr) The MemWrite control signal is asserted when during

a store instruction when a registers value is stored in the data

memory. The ALUSrc control signal determines if the ALU

second operand comes from the register file or the sign extend.

The RegWrite control signal is asserted when the register file

needs to be written.

4.2.2 Register files (RF): During the decode stage, the two

register Rs & Rt are identified within the instruction, and the

two registers are read from the register file. In this design, the

register file is of 8X8 size (namely r0 to r7) which had 8

entries. At the same time the register file was read, instruction

issue logic in this stage determined if the pipeline was ready

to execute the instruction in this stage. If not, the issue logic

would cause both the Instruction Fetch stage and the Decode

stage to stall. If the instruction decoded was a branch or jump,

the target address of the branch or jump was computed in

parallel with reading the register file. The branch condition is

computed after the register file is read, and if the branch is

taken or if the instruction is a jump; the PC predictor in the

first stage is assigned the branch target, rather than the

incremented PC that has been computed.

4.3 Execution Unit: The third stage in the pipeline is where

the arithmetic- and logic-instructions will be executed. All

instructions are executed with 8-bit operands and the result is

a 8-bit word.The execution unit of the pP processor contains

the arithmetic logic unit (ALU) which performs the operation

determined by the ALUop signal. The branch address is

calculated by adding the PC+1 to the sign extended immediate

field shifted left 2 bits by a separate adder. The logic elements

to be implemented in VHDL.

4.3.1 ALU unit: The arithmetic/logic unit (ALU) executes all

arithmetic and logical operations. The arithmetic/logic unit

can perform four kinds of arithmetic operations, or

mathematical calculations: addition, subtraction,

multiplication, and division. As its name implies, the

arithmetic/logic unit also performs logical operations. A

logical operation is usually a comparison. The unit can

compare numbers, letters, or special characters. The computer

can then take action based on the result of the comparison.

This is a very important capability.

 4.4Memory Access unit

The memory access stage is the fourth stage of pipeline. This

is where load and store instructions will access data memory.

During this stage, single cycle latency instructions simply

have their results forwarded to the next stage. This forwarding

ensures that both single and two cycle instructions always

write their results in the same stage of the pipeline, so that just

one write port to the register file can be used, and it is always

Available. If the instruction is a load, the data is read from the

data memory.

4.4.1 Data Memory Unit (DM): The data memory unit is only

accessed by the load and store instructions. The load

instruction asserts the MemRead signal and uses the ALU

Result value as an address to index the data memory. The read

output data is then subsequently written into the register file.

A store instruction asserts the MemWrite signal and writes the

data value previously read from a register into the computed

memory address.

4.5 Write back unit

 During this stage, both single cycle and multi cycle

instructions write their results into the register file.

V. VARIOUS HAZARDS IN PIPELINE

Although with the help of pipeline we can increase the clock

rate and overall throughput of a processor but during the

process the following hazards may occur
 [1]

5.1 Structural hazards: - It arises from resources conflict

when the hardware cannot support all possible combinations

of instructions simultaneously in overlapped execution. It can

be handled by using separate memories one for data and one

for instructions.

5.2 Data Hazards: - When an instruction depends on the

results of a previous instruction in a way that is exposed by

the overlapping of instructions in the pipeline. It can be

handled by using data forwarding.

5.3Control Hazards:- It arises from the pipelining of branches

and other instruction that change the PC.

VI. CONCLUSION AND FUTURE WORK

With the help of pipeline architecture mentioned above

overall throughput of the pP can be increased.As far as result

is concerned a basic 8 bit microprocessor having clock rate of

2 MHZ and consists 6000 transistors achieve the MIPS of

0.64(INTEL 8080).So upon pipelining the Pico processor

should achieve greater MIPS than above. With this kind of

improve performance pP can be used for small embedded

applications as well as for educational purpose.

 Future work will be added by increasing the number of

instructions and to add more pipelined stages in the design to

improve the performance of the design and to increase the

speed of the processor.

REFERENCES

[1] John L. Hennessy, David A. Patterson “Computer Architecture

Quantitative approach”4th edition Morgan Kaufmann publishers.

[2] John L. Hennessy, David A. Patterson “Computer Organization and

Design The hardware Software Interface”3rd edition Morgan Kaufmann

publishers.
[3] Peter J. Ashenden. “Pico Processor model” Elsevier book store

 http://booksite.elsevier.com/9780124077263/picoprocessor.php

[4] Ken chapman “Pico Processor” Ken Chapman IEE Computing and
Control Engineering October /November 2003 .

[5] Galani Tina, R.D.Daruwala “Performance Improvement of MIPS

Architecture by Adding New Features” IJARCSSE,vol 3,Issue 2,feb
2013.

[6] Kirat Pal Singh,Shivani Parmar “Vhdl Implementation of a MIPS 32 bit

pipeline processor” IJAER, vol. 7,No.11(2012).

[7] R.Uma “Design and performance Nalysis of 8-bit RISC Processor Using

XILLINX Tool” IJERA,Vol.2 Issue 2,Mar-Apr 2012,pp.053-058.

