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Abstract- Proposed paper is the study of unpipelined 

architecture of a 8 bit Pico Processor (pP) [3][4] and how its overall 

through put can be increased by implementing pipelining. Pico 

processor is an 8 bit processor which is similar to 8 bit 

microprocessors for small embedded applications and it is 

intended for educational purpose .In the past un pipelined single 

cycle and multi cycle Pico Processor is implemented [3] .Its speed 

and overall through put can be increased by implementation of 

pipeline architecture [1] so that it can be used in small embedded 

applications like gaming processor. 
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I. INTRODUCTION 

The picoProcessor abbreviated as pP is an 8-bit processor 

intended for educational purposes. It is similar to 8-bit 

microprocessor for small embedded applications, but has an 

instruction set architecture more similar to RISC processors. 

The pP has separate instruction and data memories. The 

instruction is 4K instruction in size and the data memory is 

256 bytes, the pP can also address I/O devices using up to 256 

input and output ports. Within the processor there are eight 8-

bit general purposes registers r0 to r7. Register r0 is always 

read as zero and ignores writes. In the past first unpipelined 

single cycle architecture of pP is implemented then it has been 

observed that its speed can be increased by introducing multi 

cycle unpipelined architecture
 [3]

. 

                                              Apart from past work it is 

observed that modern day processors are very fast in order to 

be able to process a large number of instructions. One way of 

making the processor fast is to increase the clock frequency. 

However, since the power dissipation of a microprocessor is 

proportional to the frequency of the clock, having a very high 

clock could lead to overheating of the processor. Another way 

to increase the number of instructions is to process multiple 

instructions at the same time. Pipelining is an implementation 

technique whereby multiple instructions are overlapped in 

execution. A pipelined processor increases performance by 

increasing the throughput as compared to a non-pipelines 

processor. Pipelining, however, introduces a whole new set of 

problems, also referred to as hazards, while executing the 

instructions. The following paper describes the study of un 

pipelined single cycle and multi cycle architecture of 

picoProcessor and how its overall through put can be 

increased by introducing pipelinig
1][2]

.In this paper section I 

consists of introduction to picoProcessor and pipelining, 

Section II describes the un pipelined single cycle 

picoProcessor section III tells the multi cycle unpipelined 

architecture, section IV  describes the proposed architecture 

with pipeline, section V gives the hazards in pipeline 

architecture of pP whereas section VI gives the expected 

result and future work. 

II. AN UN-PIPELINED SINGLE CYCLE PP 

 

 
Figure 1 shows an unpipelined pP organization that 

executes each instruction in one clock cycle. Values stored on 

one clock edge flow through the data path, and the machine 

state is updated on the next clock edge. The clock Period must 

be long enough for the slowest path through the design. 

Execution within a cycle starts with checking whether an 

interrupt request is pending. If one is, the current PC and 

condition code bits are saved in the interrupt register and the 

next PC value is selected to be the address 1. No other 

machine state is updated. If no interrupt is requested, the PC 

value is used to index the instruction memory to fetch the 

instruction to be executed. Since all operations for the 

instruction take place within a cycle, the instruction memory 

must be an asynchronous ROM. The next PC value depends 

on the instruction op code and, in the case of branch 

instructions, whether the branch is taken or not. For JSB 

instructions, the next PC value is saved into the return-address 

stack and the stack pointer is incremented. For RET 

instructions, the top value in the stack is used as the next PC 

and the stack pointer is decremented. The general-purpose 

register (GPR) is an a multiport register file with two 
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asynchronous read ports and a synchronous write port. The 

register address field for one read port is the r1 field of the 

instruction. The address for the other read port is either the rd. 

field (for STM and OUT instructions) or the r2 field (for other 

instructions).The write port is used for ALU, shift, load and 

input instructions, provided the destination address is not r0. 

The rd field from the instruction is used as the write-port 

address, and the data to be written comes from the appropriate 

source, depending on the instruction
 [3]

. 

                                                     The ALU calculates the 

result value for ALU and shift instructions and the effective 

address for memory instructions. For ALU and shift 

instructions, the condition code bits are updated according to 

the result. The multiplexer on the ALU input selects between 

a register operand for register-register instructions or the 

constant value from the instruction for immediate and memory 

instructions. The data memory is asynchronously read for load 

instructions and synchronously written for store instructions. 

The address comes from the ALU result. The external port 

interface is used for input and output instructions. Since this 

implementation of the pP executes instructions within a single 

cycle, it assumes that port inputs are asynchronous within a 

cycle and that port outputs update the port register 

synchronously at the end of the cycle. Thus, the port ready 

input is ignored. 

III. AN UNPIPELINED MULTICYCLE PP 

 
Figure 2 shows an unpipelined pP organization that takes 

multiple clock cycles to execute each instruction. On each 

cycle, one step of instruction interpretation is performed, and 

the machine state is updated at the end of the cycle. Different 

instructions may take different numbers of cycles, depending 

on the interpretation steps required. The advantage of this 

approach over the single-cycle approach is that much less 

work needs to be done per cycle, so the cycle time can be 

faster. Furthermore, many instructions do not require all 

interpretation steps, so their execution will be faster than for 

the single-cycle implementation
 [3]

. 

                                                The first cycle of execution 

involves checking whether an interrupt request is pending. If 

one is, the current PC and condition code bits are saved in the 

interrupt register and the PC is set to 1. Execution of the 

interrupt service code then proceeds in the subsequent 

cycle .If no interrupt is requested, the first cycle is used to 

index the instruction memory to fetch the instruction to be 

executed. In this implementation, the instruction memory is a 

synchronous ROM, and the ROM output register forms the 

instruction register (IR). The PC register is updated with the 

incremented PC value. During the second cycle, the GPR 

register file is accessed to fetch operands, in case they are 

required. The register file in this implementation has 

synchronous read ports, and the operands are stored in two 

output registers. Also in this cycle, control-flow processing is 

performed. If the instruction in the IR is a conditional branch 

that is taken, the PC is updated with the sum of its current 

value and the branch displacement. If the instruction is a JMP, 

the PC is updated with the target address. If the instruction is a 

JSB, the PC is updated with the target address, the current PC 

value is pushed onto the return-address stack, and the stack 

pointer is incremented. If the instruction is a RET, the PC is 

updated from the top of the stack, and the stack pointer is 

decremented. If the instruction is a RETI, the PC and 

condition codes are restored from the interrupt register, and 

interrupts are enabled. If the instruction is an ENAI or DISI, 

the interrupt enable bit is set accordingly. In all cases of 

control flow instructions, processing is complete after the 

second cycle. 

                The third cycle (if required) involves 

computation of a data result or an effective address by the 

ALU. The result is stored in an output register. Also, for 

arithmetic, logic and shift instructions, the condition code bits 

are updated. For memory and I/O instructions, a further cycle 

is used to access the memory or port register. The ALU output 

register is used as the address. The data memory in this 

implementation reads and writes synchronously. For memory 

stores, write data from the GPR register file output register is 

stored at the end of the clock cycle. For memory loads, read 

data is made available at the data memory output register at 

the end of the cycle. For port input and output instructions, the 

pP checks the port ready input at the end of the cycle. If it is 

negated, the pP repeats the cycle, allowing the port controller 

extra time to read or write the data. When port ready is active, 

the input or output operation is complete. For input 

instructions, the port data is stored in the data input register. A 

final cycle is required for instructions that update a destination 

register in the GPR register file, namely, arithmetic, logic, 

shift, and load and input instructions. The data source is one 

of the ALU output, the data memory output or the port input 

data register, depending on the instruction. The destination 

register (if not r0) is updated at the end of the cycle.                     
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IV. PROPOSED ARCHITECTURE WITH 

PIPELINE 

 

 

               Fig.3 pipeline architecture of 8 bit Pico Processor 

4.1 Instruction Fetch Unit 

The first stage in the pipeline is the Instruction Fetch. 

Instructions are fetched from the memory and the Instruction 

Pointer (IP) is updated. The function of the instruction fetch 

unit is to obtain an instruction from the instruction memory 

using the current value of the PC and increment the PC value 

for the next instruction as shown in Figure. This stage is 

where a program counter will pull the next instruction from 

the correct location in program memory. In addition the 

program counter will updated with either the next instruction 

location sequentially, or the instruction location as determined 

by a branch The instruction fetch stage is also responsible for 

reading the instruction memory and sending the current 

instruction to the next stage in the pipeline, or a stall if a 

branch has been detected in order to avoid incorrect execution. 

The instruction fetch unit contains the following logic 

elements that are implemented in VHDL: 12-bit program 

counter (PC) register, an adder to increment the PC by four, 

the instruction memory, a multiplexor, and an AND gate used 

to select the value of the next PC. Program counter and 

instruction memory are the two important blocks of 

Instructions Fetch Unit.
[1][2] 

4.1.1 Program counters (PC): It is a 12 bit device that is 

connected to the data bus and the address bus. It will hold its 

value unless told to do something. If the I/P is kept high the 

device will count. 

4.1.2 Instruction memory (IM): The Instruction memory of pP 

is of 4KB. During the Instruction Fetch stage, a 19-bit 

instruction is fetched from the memory. The PC predictor 

sends the Program Counter (PC) to the Instruction memory to 

read the current Instruction. At the same time, the PC 

predictor predicts the address of the next instruction by 

incrementing the PC by 1. 

4.1.3 Instruction registers (IR): An instruction register (IR) 

is the part of control unit that stores the instruction currently 

being executed or decoded. In simple processors each 

instruction to be executed is loaded into the instruction 

register which holds it while it is decoded, prepared and 

ultimately executed, which can take several steps. Traditional 

RISC processors use a pipeline of instruction registers where 

each stage of the pipeline does part. Of the decoding, 

preparation or execution and then passes it to the next stage 

for its step. Modern processors can even do some of the steps 

of out of order as decoding on several instructions is done in 

parallel. Decoding the op-code in the instruction register 

includes determining the instruction, where its operands are in 

memory, retrieving the operands from memory, allocating 

processor resources to execute the command. The output of IR 

is available to control circuits which generate the timing 

signals that controls the various processing elements involved 

in executing the instruction. 

 

4.2 Instruction Decode Unit 

The Instruction Decode stage is the second stage in the 

pipeline. Branch targets will be calculated here and the 

Register File, the dual-port memory containing the register 

values, resides in this stage. The forwarding units, solving the 

data hazards in the pipeline, reside here. Their function is to 

detect if the register to be fetched in this stage is written to in 

a later stage. In that case the data is forward to this stage and 

the data hazard is solved. This stage is where the control unit 

determines what values the control lines must be set to 

depending on the instruction. In addition, hazard detection is 

implemented in this stage, and all necessary values are fetched 

from the register banks. The Decode Stage is the stage of the 

CPU's pipeline where the fetched instruction is decoded, and 

values are fetched from the register bank. It is responsible for 

mapping the different sections of the instruction into their 

proper representations (based on R or I type instructions). The 

Decode stage consists of the Control unit, the Hazard 

Detection Unit, the Sign Extender, and the Register bank, and 

is responsible for connecting all of these components together. 

It splits the instruction into its various parts and feeds them to 

the corresponding components. Registers Rs and Rt are fed to 

the register bank, the immediate section is fed to the sign 

extender, and the ALU op-code and function codes are sent to 

the control unit. The outputs of these corresponding 

components are then clocked and stored for the next stage The 

Control unit takes the given op-code, as well as the function 

code from the instruction, and translates it to the individual 

instruction control lines needed by the three remaining stages. 

This is accomplished via a large case statement. 

4.2.1 Control unit: The control unit of the Pico processor 

examines the instruction op code bits [19 – 14] and decodes 

the instruction to generate control signals to be used in the 

additional modules. The RegDst control signal determines 

which register is written to the register file. The Jump control 

signal selects the jump address to be sent to the PC. The 

Branch control signal is used to select the branch address to be 

sent to the PC. The MemRead control signal is asserted during 

a load instruction when the data memory is read to load a 

register with its memory contents. The MemtoReg control 
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signal determines if the ALU result or the data memory output 

is written to the register file. The ALUOp control signals 

determine the function the ALU performs. (E.g. and, or, add, 

shl, shr) The MemWrite control signal is asserted when during 

a store instruction when a registers value is stored in the data 

memory. The ALUSrc control signal determines if the ALU 

second operand comes from the register file or the sign extend. 

The RegWrite control signal is asserted when the register file 

needs to be written. 

4.2.2 Register files (RF): During the decode stage, the two 

register Rs & Rt are identified within the instruction, and the 

two registers are read from the register file. In this design, the 

register file is of 8X8 size (namely r0 to r7) which had 8 

entries. At the same time the register file was read, instruction 

issue logic in this stage determined if the pipeline was ready 

to execute the instruction in this stage. If not, the issue logic 

would cause both the Instruction Fetch stage and the Decode 

stage to stall. If the instruction decoded was a branch or jump, 

the target address of the branch or jump was computed in 

parallel with reading the register file. The branch condition is 

computed after the register file is read, and if the branch is 

taken or if the instruction is a jump; the PC predictor in the 

first stage is assigned the branch target, rather than the 

incremented PC that has been computed. 

4.3 Execution Unit: The third stage in the pipeline is where 

the arithmetic- and logic-instructions will be executed. All 

instructions are executed with 8-bit operands and the result is 

a 8-bit word.The execution unit of the pP processor contains 

the arithmetic logic unit (ALU) which performs the operation 

determined by the ALUop signal. The branch address is 

calculated by adding the PC+1 to the sign extended immediate 

field shifted left 2 bits by a separate adder. The logic elements 

to be implemented in VHDL.  

4.3.1 ALU unit: The arithmetic/logic unit (ALU) executes all 

arithmetic and logical operations. The arithmetic/logic unit 

can perform four kinds of arithmetic operations, or 

mathematical calculations: addition, subtraction, 

multiplication, and division. As its name implies, the 

arithmetic/logic unit also performs logical operations. A 

logical operation is usually a comparison. The unit can 

compare numbers, letters, or special characters. The computer 

can then take action based on the result of the comparison. 

This is a very important capability. 

 4.4Memory Access unit 

The memory access stage is the fourth stage of pipeline. This 

is where load and store instructions will access data memory. 

During this stage, single cycle latency instructions simply 

have their results forwarded to the next stage. This forwarding 

ensures that both single and two cycle instructions always 

write their results in the same stage of the pipeline, so that just 

one write port to the register file can be used, and it is always 

Available. If the instruction is a load, the data is read from the 

data memory. 

4.4.1 Data Memory Unit (DM): The data memory unit is only 

accessed by the load and store instructions. The load 

instruction asserts the MemRead signal and uses the ALU 

Result value as an address to index the data memory. The read 

output data is then subsequently written into the register file. 

A store instruction asserts the MemWrite signal and writes the 

data value previously read from a register into the computed 

memory address.  

4.5 Write back unit 

 During this stage, both single cycle and multi cycle 

instructions write their results into the register file. 

V. VARIOUS HAZARDS IN PIPELINE 

Although with the help of pipeline we can increase the clock 

rate and overall throughput of a processor but during the 

process the following hazards may occur
 [1]

 

5.1 Structural hazards: - It arises from resources conflict 

when the hardware cannot support all possible combinations 

of instructions simultaneously in overlapped execution. It can 

be handled by using separate memories one for data and one 

for instructions. 

5.2 Data Hazards: - When an instruction depends on the 

results of a previous instruction in a way that is exposed by 

the overlapping of instructions in the pipeline. It can be 

handled by using data forwarding. 

5.3Control Hazards:- It arises from the pipelining of branches 

and other instruction that change the PC. 

VI. CONCLUSION AND FUTURE WORK 

With the help of pipeline architecture mentioned above 

overall throughput of the pP can be increased.As far as result 

is concerned a basic 8 bit microprocessor having clock rate of 

2 MHZ and consists 6000 transistors achieve the MIPS of 

0.64(INTEL 8080).So upon pipelining the Pico processor 

should achieve greater MIPS than above. With this kind of 

improve performance pP can be used for small embedded 

applications as well as for educational purpose. 

 Future work will be added by increasing the number of 

instructions and to add more pipelined stages in the design to 

improve the performance of the design and to increase the 

speed of the processor. 
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